The role of lee waves for dissipation of transient eddies in the Southern Ocean

Luwei Yang 1,2 , Maxim Nikurashin 1,2 , Andrew Hogg 2,3 , Bernadette Sloyan 4

¹Institute for Marine and Antarctic Studies, University of Tasmania ²ARC Centre of Excellence for Climate System Science ³Research School of Earth Sciences, Australian National University ⁴CSIRO Oceans and Atmosphere

30 October 2017

Southern Ocean circulation

- Antarctic Circumpolar Current (ACC)
- Meridional Overturning Circulation (MOC)

Transient eddies

Courtesy by Ryan Abernathey

- ACC \leftarrow Slope of isopycnals \leftarrow Eddy generation
- MOC \leftarrow Water mass transformation \leftarrow Eddy fluxes

Sensitivity to wind stress

EKE anomaly (cm2 /s2) -30 2005 2010

Hogg et al. (2015)

Energy dissipation

$\mathsf{MOC} \leftarrow \mathsf{Water} \; \mathsf{mass} \; \mathsf{transformation} \leftarrow \; \mathsf{Enhanced} \; \mathsf{mixing}$

- Transient eddies \rightarrow Lee waves
- ... (e.g., Mean flow) \rightarrow Lee waves
- Transient eddies \rightarrow ... (e.g., turbulences in TBBL)

Lee waves

- Geostrophic flow, subinertial frequency
- Rough small-scale topography, O(100m-10km)
- Weak stratification (e.g., Bell 1975)

Data

- Near-bottom velocity and stratification
 - MOM5-SIS (Sea Ice Simulator) (Stewart et al. 2017)
 - Eddy-resolving $(1/10^{\circ})$
 - 50 vertical levels

- Small-scale topography
 - Goff 2010
 - Goff and Arbic 2010
 - Nikurashin and Ferrari 2011

Energy conversion to lee waves

• Mean flow (0.04 TW)
• Eddy flow (0.12 TW) $\rightarrow \text{Lee wave:}$

Energy dissipation of eddies

 $\mathsf{Transient\ eddies} \to \begin{cases} \mathsf{Conversion\ to\ lee\ waves\ (0.12\ \mathsf{TW})} \\ \mathsf{Dissipation\ in\ TBBL\ (0.05\ \mathsf{TW})} \end{cases}$

Comparisons

Table 1: Southern Ocean-integrated dissipation rates, unit: TW

	Total	Eddy	Mean	Topography
Conversion into lee waves	0.16	0.12 (75%)	0.04 (25%)	G2010
	0.10	0.07 (76%)	0.03 (24%)	GA2010
	0.09	0.06 (69%)	0.03 (31%)	NF2011
Dissipation in TBBL	0.07	0.05 (75%)	0.02 (25%)	_

Energy conversion into lee waves:

- Mean flow (\leq 31%) • Eddy flow (\geq 69%) \rightarrow Lee waves
- Energy dissipation of transient eddies:

Transient eddies
$$\rightarrow \begin{cases} \text{Conversion to lee waves} \\ \text{Dissipation in TBBL} \end{cases}$$

Conclusions

Transient eddies \rightarrow Lee waves \rightarrow Turbulent mixing

The energy conversion from eddies to lee waves is significant and should be represented in eddy-resolving ocean models as a dissipation mechanism for transient eddies.

Work in progress

Idealised periodic channel configuration, MOM6

- Sensitivity to wind stress
- ullet Parameterised lee waves o mixing
- ullet Parameterised eddies o lee waves

Contact: luwei.yang@utas.edu.au

Yang, L., Nikurashin, M., Hogg, A.M., and Sloyan B.M., 2017. The role of lee waves for dissipation of transient eddies in the Southern Ocean, manuscript in preparation.